Some rules of thumb:
M in Kdaltons, s in Svedbergs, D in Ficks, Rs in Angstroms,
speed in K rpm, rho=1.000 g/cc, v-bar=0.725 cc/g, T = 293 K.
Transport
M=91s/D Rs=215/D20,w s=2.4 M/Rs f/fo=4.32M2/3/s (&delta1=0.3)
For the equivalent sphere
&delta1=0.0
Ro=20/3 M1/3 so=M2/3/2.8 M = 5.6 so3/2
&delta1=0.3
Ro=30/4 M1/3 so=M2/3/3.2 M = 4.7 so3/2
For the random coil
&delta1=0.0
Rs = 10.0 M0.56 src = 0.24 M0.44
For a prolate ellipsoid
for a/b > 5.0, f/fo=(a/b)2/3/ln(2a/b)
For dc/dt analysis
Δt/t = Δln(&omega2t) < 70/(M1/2speed)
D = (σω2trmen)2/2t (σ= std dev of g(s*)in Svedbergs)
Equilibrium
For σ > 2.0 cm-2 , where &sigma = d(lnc)/d(r2/2)=M(1-v ρ)ω2/RT
teq,5o=40000/(speed)2/s20,w hours (τ=0.22) (column height=3mm) (Mason's Rule)
teq,5o=17000 (Rs/M)/(speed)2 hours (τ=0.22) &tau=2ω2st=2ln(rb/rm)
tos/teq=0.134(σ)0.58/((ωos/ωeq)2-0.5) (c.f. D.E. Roark, 1976)
For σ > 0:
Compute time to equilibrium - any speed
speedeq=88[σ/M]1/2; M=[σ/(speedeq/88)2] and σ = M(speedeq/88)2
Walter Stafford - May 8, 2006