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A procedure is described for computing sedimenta-
tion coefficient distributions from the time derivative
of the sedimentation velocity concentration profile. Use
of the time derivative, (dc/dt),, instead of the radial de-
rivative, (de/dr),, is desirable because it is independent
of time-invariant contributions to the optical baseline.
Slowly varying baseline changes also are significantly
reduced. An apparent sedimentation coefficient distri-
bution (i.e., uncorrected for the effects of diffusion),
£*(s), can be calculated from (dc/dt), as
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where s is the sedimentation coefficient, w is the angu-
lar velocity of the rotor, ¢, is the initial concentration, r
is the radius, r,, is the radius of the meniscus, and t is
time. An iterative procedure is presented for computing
£*(s), by taking into account the contribution to (dc/0dt),
from the plateau region to give (dc/dt).,... Values of
&%(8), obtained this way are identical to those of g*(s)
calculated from the radial derivative to within the
roundoff error of the computations. Use of (dc/dt),, in-
stead of (dc/dr),, results in a significant increase (>10-
fold) in the signal-to-noise ratio of data obtained from
both the uv photoelectric scanner and Rayleigh optical
systems of the analytical ultracentrifuge. The use of
(dc/dt), to compute apparent sedimentation coefficient
distributions for purposes of boundary analysis is ex-
emplified with an antigen—antibody system. © 1992 Aca-

demic Press, Inc.

Analysis of particle size distributions has been an im-
portant use of the analytical ultracentrifuge since its
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inception in the early 1920s by Svedberg and Nichols
(1) and Svedberg and Rinde (2,3). In 1942, Bridgman
(4) first presented an equation for computing sedimen-
tation coefficient distributions from refractive index
gradient curves. The Bridgman equation was exploited
extensively in the 1950s especially by Baldwin and Wil-
liams (5). The following report describes the use of the
time derivative of the concentration distribution to
compute sedimentation coefficient distributions either
from optical density profiles as a function of radius ob-
tained from the uv photoelectric scanning system or
from fringe deflections as a function of radius from the
Rayleigh interferometric optical system. The develop-
ment of on-line Rayleigh interferometric optical sys-
tems (6-8) has made it possible to acquire and analyze
data rapidly. Analytical procedures that previously re-
quired a large amount of time and effort now can be
carried out routinely; the on-line computation of sedi-
mentation coefficient distributions has become possi-
ble. The relationship for g*(s), presented below was
first presented at the Workshop on Ultracentrifugation
held at the 1989 Biophysical Society meeting in Cincin-
nati (9) and also at the 1990 International Biophysics
Congress in Vancouver (1990) (10). The equation pre-
sented in the latter abstract contained a typographical
error.

The following quantity is defined as the normalized
differential sedimentation coefficient distribution

LEOLYES e

where ¢ is the concentration on the c-scale, ¢, is the
initial loading concentration, sis the sedimentation coef-
ficient, r is the radius, r,, is the radius of the meniscus,
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andj = r or t depending on whether it is calculated from
dc/dr or dc/dt, respectively. The function g(s) gives the
weight fraction of material, g(s)ds, sedimenting with
sedimentation coefficients between s and s + ds. The
integral distribution curve is given by

G(s)= IFS g(z)dz.
z=0

In those cases for which diffusion contributes signifi-
cantly to boundary spreading, the distribution functions
are referred to as apparent distributions and denoted
with an asterisk as g*(s) or G*(s), respectively. We con-
sider both types of system, with and without diffusion,
below. Extrapolation methods for dealing with the ef-
fects of diffusion on the g*(s) patterns will be treated
elsewhere.

The concentration distribution of the sedimenting
material can be viewed either as a function of radius at
fixed, particular instants of time or as a function of time
at fixed, specified values of radius. As shown below, ap-
parent sedimentation coefficient distributions can be
obtained from either the radial or the temporal varia-
tion of the concentration distributions. The main ad-
vantage of using the time dependence is that the preci-
sion of both the uv photoelectric scanner and the
Rayleigh optical system is increased by a factor of from
10 to 100. This increase in precision can be achieved
because the differentiation process results in complete
elimination of the time-independent optical baseline
components. Analysis of the time dependence of the
concentration profiles to solve the Lamm equation has
been exploited by Bethune and co-workers (11-13).
Difference patterns have been used in the past to reduce
baseline contributions of a photoelectric scanning sys-
tem (14). The time dependence of the concentration at
a single radial position was used by Runge et al. (7),
using an on-line system to analyze the ATP-induced
formation of an associated complex between microtu-
bules and neurofilaments. Michtle (15) has devised a
method for determining broad particle size distributions
by following light intensity at a single point using an
eight-hole rotor and multiplexer system.

SIMULATION OF SEDIMENTATION PATTERNS

Simulated sedimentation patterns were computed by
the finite element method of Claverie et al. (16) (pro-
grams kindly supplied by Dr. David Cox) for various
ideal noninteracting systems. The patterns shown be-
low were computed with a grid spacing of 400 points /cm
and with a sedimentation time interval of 1 s between
iterations.

For the case of a Gaussian distribution of s, with D =
0 for each component, the profiles were computed from
the conditions that the boundary position for each com-
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ponent be given by Eq. { 7] and that the plateau concen-
tration, c,;, for each component obey the relation

Cpi = Co€Xp(—2w3s;t).

‘Pt
The boundary was constructed from 1000 components
at intervals of 0.1 S with the values of ¢,; given by the
Gaussian distribution function. These were summed
over all species to give the simulated concentration pro-
file. Values of dc/dt were approximated by subtracting
pairs of these profiles spaced closely in time. The values
of dc/dt were converted to £(s) using Eq. [17]. These
values of g(s) were used to correct the values of (dc/dt),
for the “plateau’ contribution as described below using
Eqgs. [18] and [19].

DERIVATION OF THE RELATION FOR g*(s)
OBTAINED FROM 0c/dt

The following derivation is similar to that given by
Fuyjita (17) for the Bridgman equation (see Eq. [21],
below). First, we define the variable, s*, as the radial
coordinate through the following relationship for the
case of a single, hydrodynamically ideal component with
zero diffusion coefficient. The distinction between the
sedimentation coefficient of an individual component,
s, and this coordinate, s*, must be kept in mind. In the
case of zero diffusion coeflicient, s* = s at the boundary
position and we have

1

w?t*

*

s* = In(r*/r,). [1]

We can define the implicit function

F(r*, s* t*) = In(r*/ry) — w?%*t* =0 [2]
so that at any given time, t*, r* corresponds to the posi-
tion of the boundary or conversely, and at any given
radius, r*, t* corresponds to the time at which the
boundary is located at r*. Since

dF = ( 6F)dr* + (—a—E)ds* + (ﬂ)dt*, [3]

or* ds* at*
we have
_qlﬁ _ (0F/0s*),. _ B t_* B wt*? 4
ds* (OF /3t*) . s*  In(r,/r*)’ [4]

Now, assuming an infinitely long centrifuge cell, the
time dependence of the concentration at an arbitrarily
fixed position, r, in the cell, for the case of D = 0, for a
single component is given by
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¢, (t) = coexp(—2w3st) U(t* — t), [5]
where ¢, (t) is the concentration at radial position r as a
function of time, ¢, is the initial concentration, w is the
angular velocity of the rotor, s is the sedimentation coef-
ficient, and tis time. U (t* — t) is the Heaviside unit step
function defined by

U(t* —1t) =1,
U(i*—-t)=0,

0<t<t*

t* < t, [6]
where t* is the time at which the boundary passes the
point r. We can also write that the position of the bound-
ary is given by

r* = rpexp(w?st*) (7]
sothat at t*, r = r*. Note that s is not starred in Egs. [5]
and [ 7] since it is the actual value of s for the component
under consideration.

Differentiating Eq. [5] with respect to time at con-
stant r, we have

P
- é = coexp(—2wst) 8 (¢* — t)

+ 2w?scoexp (—2w3st) U(t* — t), [8]
where 6(t* — t) is the Dirac delta function defined as

6(t* —t) = o0,
6(t* —t) =0,

fort = t*

for t # t*. [9]

The delta function also has the properties that

f:jwﬁ(t*—t)dt= 1, [10]
f: AD8(e* - 0)de = fie), [11]
and [cf. Arfken (18) or Born and Wolf (19)]
5(t—t*)=‘dt(s) Tos — s%), [12]
ds

where dit(s)/ds is given by Eq. [4].

For the case of a continuous distribution of s, we
arrive at the derivative of the total macromolecular con-
centration at each point by integrating over all values of
s using Egs. [4] and [12]:
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dc 8= In(r*/r,)
—E = J:,—=O g(s*)coexp(—2w2s*t)(—wth)
X o(s —s*)ds* +2w2f s*g(s*)c,
s*=0

X exp(—2wZs*t) U(s* — s)ds*, [13]

where U(s* —s) =1fors<s*and U(s*—s) =0fors>
§*; ¢, is the total loading concentration and the concen-
tration of each component is given by g(s)c, (see
Eq. [11]).

Carrying out the integration, relying on Egs. [7] and
[11], and specifying limits of integration for the second
term, we have

dc | In(r*/r,)
v g(s*)coexp(—szs*t)(th)
+ 2w2f g(s)scyexp(—2w3st)ds. [14]
§=0
Rearranging, we have
g(s*)
_ 0c/dt + 2w® [3257 8(s)scoexp (—2w3st)ds [15]

coexp (—2w?s*t) ((In(r,/r*)) /wit*?)

The first term in the numerator represents the ob-
served, total time derivative of the concentration pro-
file, which includes the contribution from the plateau
region at s*. The second term represents the contribu-
tion from the plateau region only. Therefore, the nu-
merator is equal to the sum of the contribution from
each of the components at its boundary position only.
This function can be computed easily by iteration: .

First, we define the unnormalized distribution func-
tion as

8(s*) = g(s*),coexp (—2w3s*t). [16]

On the first iteration, the integral in the numerator is
set to zero, so that

[17]

dc wt*?
S k) ~
&(s )_—at( )

In(r,/r*)
This approximate value of g(s*) is then used in the in-

tegral on the second iteration to compute a closer ap-
proximation as

g(s*(r))
_ de(r*)/at + 2w® [7" s*(r)8(s*(r))ds*(r)
((n(r,/r*)/w?t*?) )

(18]

The new value of §(s*) is then used to recompute the
integral and the procedure is repeated until convergence
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FIG. 1. Simulated sedimentation patterns for a system composed of two species: s, = 20.0 S with D, = 2.0 F (M, = 900 kDa) and s, = 25.0 S

with D, = 5.0 F (M, = 450 kDa). Speed = 60,000 rpm. Roman numerals I-VI are for times of sedimentation of 60, 240, 480, 720, 960, and 1260 s,
respectively. (A) Concentration vs radius profiles for various times of sedimentation. (B) Plots of the radial derivative vs radius for the same
system at the corresponding times of sedimentation. (C) Plots of the time derivative vs radius at the corresponding times of sedimentation.
One feature to note is that the value of dc/dt < 0 in the region centrifugal to the boundary and decreases in magnitude with time. The value of
dc/at in this region is proportional to the product of the weight average sedimentation coefficient and the concentration in that region. The
value dc/dt must be corrected for this contribution. The procedure is presented in the text.

is reached. The final, corrected value of g(s*) is then
converted to g(s*), (after dropping the stars, but keep-
ing them in mind), using

£(s)

—_— 19
coexp ( —2w?2st) [19]

g(s), =

In practice, three iterations will give satisfactory con-
vergence.

Equation [15] is analogous to the Bridgman equation
below (Eq. [21]) if one notes that the iteration proce-
dure effectively corrects the time derivative for the con-
tribution from the plateau region so that

()—(ﬁ BRI TRA
8(8) = at)co.,(co)(ln(rm/r))(rm) '

Often, at very low concentrations, ¢, is not known
accurately and is left out of the computation. The area

(20]

under the g(s) curve, in this case, will give the initial
concentration. The distribution can be normalized us-
ing this value of the initial concentration.

The equation of Bridgman (4,17), used for computing
£(s) from the radial derivative, is

e
ar )\ ¢, Fm

In cases for which diffusion cannot be ignored, these
functions will be apparent sedimentation coefficient
distributions, as mentioned above, and designated as
such with an asterisk as either g*(s), or g*(s),. The ap-
parent distribution function, without further correction
for diffusion, is useful for boundary analysis.

RESULTS

We first examine two cases of simulated sedimenta-
tion and then an experimental example.

[21]
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FIG. 2. The apparent sedimentation coefficient distributions, g*(s), computed from the patterns shown in Fig. 1. (A) Plots of g*(s),
computed from dc/dr using the Bridgman equation (Eq. [21]). (B) Plots of g*(s), computed using Eq. [15] and the iterative procedure
represented by Eq. [18]. (C) Comparison of g*(s), and g*(s), showing that the two methods give equivalent distribution functions. Left y-axis:

(1) g*(s), and (II} g*(s),. Right y-axis: (III) Ag*(s) = g*(s), — £*(s);-

Simulated Sedimentation Patterns

Two systems were simulated: the first is for a system
composed of two components, one havings, =208, D, =
2.0 F and the other s, = 25 S and D, = 5.0 F, present in
equal amounts; the second simulated case is for a sys-
tem having a nearly continuous Gaussian distribution
of s (1000 components with u = 50 Sand ¢ = £10 S) and
no diffusion.

The first system was simulated for the purpose of
comparing g*(s), with g*(s),, in order to test the itera-
tion procedure to determine whether it gives the same
results as the Bridgman equation when D is not negligi-
ble. When the iteration procedure is applied three times,
the corrected values of g*(s), are nearly identical to
those calculated from g*(s), using the Bridgman equa-
tion (4). Figure 1 shows a series of sedimentation pat-
terns for the two species system. Figure 1A shows the
concentration as a function of radius at various times
and Figs. 1B and 1C show plots of (dc/dr),and (dc/dt),,
respectively, as a function of time for the corresponding
curves in Fig. 1A.

Figure 2 shows g(s) curves computed from (dc/dr), us-
ing the Bridgman equation and from (dc/dt), using
equation [15] after three iterations for the system
shown in Fig. 1. Figure 2C shows a comparison plot. The
curves obtained by the two methods are nearly identical
to within the roundoff error of the simulations.

The second system, one having a nearly continuous
Gaussian distribution of s (4 =50 S, ¢ = 10 S) and no
diffusion, is shown in Fig. 3. The original, true g(s)
curve is shown along with the uncorrected and corrected
g(s) curves computed as described above. The agree-
ment between the corrected and the original g(s) used
to generate the concentration profiles is very good.
These two examples show that this method using dc/dt
to compute g*(s), gives reliable results in cases of both
negligible and nonnegligible diffusion.

Experimental Example

The method for computing g*(s) from dc/dt was dem-
onstrated experimentally by examining the interaction
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FIG. 3. Comparison of g(s), to the true distribution, g(s). Sedimentation coefficient distribution function for a simulated system composed
of Gaussian distribution of 1000 species having a mean sedimentation coefficient of 50 S and a standard deviation of +10 S. (A) Differential
distribution. ( B) Integral distribution obtained by integrating the curves in (A). The sedimentation patterns where generated as described in
the text. (I) The true distribution of sedimentation coefficients used to generate simulated sedimentation profiles. (II) The distribution
function uncorrected for the contribution to the “plateau” region centrifugal to each boundary as described in the text. (III) The corrected
distribution function. (The “jagged” character of the curve at the maximum of the peak arises because the distribution is computed from the
difference of two concentration profiles, each of which comprises a series of discrete step functions. The step size is maximal at the peak of the
distribution function. This is an artifact of the simulation procedure and could be reduced by using more species in the original distribution.)

between diphtheria toxin and anti-diphtheria toxin im-
munoglobin G. Figure 4 shows the g*(s), patterns ob-
tained using an on-line Rayleigh optical system (8) with
three cells in a four-hole rotor. Rayleigh interferograms
of all three cells were acquired and analyzed every 60 s.
Values of Ac/ At were computed by subtracting pairs of

0.25 T T T T T T T T T T T T T T

0.20

0.15

<g*(s)>

0.10

0.05

0.00
0.0 2.0 4.0 6.0 8.0

10.0
s (Svedbergs)

12.0 14.0

FIG. 4. Demonstration of the technique: Sedimentation velocity
analysis of complex formation between anti-diphtheria toxin immu-
noglobin G and diphtheria toxin. Sedimentation was carried out at
56,000 rpm at 20°C using an on-line Rayleigh optical system (8) and
12-mm Kel-F centerpieces with sapphire windows. (A) Diphtheria
toxin alone (¢, = 90 pg/ml; 0.32 fringes at A = 6328 A; t,., = 5497 s),
(B) anti-diphtheria toxin immunoglobin G alone (190 ug/ml; 0.66
fringes; t,.; = 3384 s), and (C) the mixture showing complex forma-
tion (260 ug/ml; 0.92 fringes; t,q = 2793 s). The error bars are the
standard error of the mean propagated from the averaging process.
The data used in the computation were collected over a time interval
of 600 s.

concentration profiles closely spaced in time. These val-
ues of Ac/ At were substituted into Eq. [15] for dc/dt to
obtain £(s),, which was then corrected using Eqgs. [18]
and [19] for the plateau contribution with three itera-
tions to give g*(s),. Each of the curves shown in Fig. 4
was obtained from the average of several data sets ob-
tained over a small time interval (20). The details of the
averaging procedure will be presented elsewhere.

DISCUSSION

A procedure for computing apparent sedimentation
coefficient distribution functions, g*(s), from the time
derivative of the concentration profile has been pre-
sented. The method has the advantage over other
means of boundary analysis in that it completely elimi-
nates the time-invariant optical background contrib-
uted by the cell windows and optics of the ultracentri-
fuge. Because the time derivative is computed from
patterns closely spaced in time, the procedure also
greatly reduces slowly varying background contribu-
tions such as those from drive oil accumulation and
creep of cell components affecting cell window contri-
butions. The signal-to-noise ratio of data analyzed by
this method is considerably higher than that attainable
by other methods with the same optical systems. The
resulting increase in precision allows boundary analysis
to be carried out at lower concentrations than those
otherwise attainable. This method will enable investi-
gation of interacting and noninteracting systems in a
concentration range previously inaccessible to the ana-
lytical ultracentrifuge with the uv photoelectric scanner
and Rayleigh optical systems.
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